

OPTIMIZING ORGANIC INPUTS FOR IMPROVED FENUGREEK (*TRIGONELLA FOENUM-GRAECUM* L.) CULTIVATION IN NORTHEAST REGION OF INDIA

Likivi H. Kih¹, Graceli I. Yephthomi¹, Nzanthung Ezung^{1*}, C.S. Maiti¹, S.P. Kanaujia¹ and A.K. Singh²

¹Department of Horticulture, School of Agricultural Sciences, Medziphema Campus,
Nagaland University, Nagaland - 797106, India

²Department of Soil Science, School of Agricultural Sciences, Medziphema Campus,
Nagaland University, Nagaland - 797106, India

*Corresponding author E-mail: nzanthung_rs2023@nagalanduniversity.ac.in

(Date of Receiving : 10-08-2025; Date of Acceptance : 21-10-2025)

Fenugreek (*Trigonella foenum-graecum* L.) exhibits anti-diabetic, galactogouge, hypocholesterolemic and carminative qualities which supports the need for its sustainable cultivation. Thus, a field experiment was carried out at the School of Agricultural Sciences (SAS), Nagaland University, to study the effect of different organic sources on foliage, seed yield and BCR of fenugreek. The experiment was laid out in Randomized Block Design (RBD) with 3 replications and 10 treatments with T₁ (FYM) 100%, T₂ (Vermicompost 100%), T₃ (Neem Cake 100%), T₄ (Pig manure 100%), T₅ (Poultry Manure 100%), T₆ (50% FYM + *Trichoderma*), T₇ (50% Poultry Manure + *Rhizobium*), T₈ (50% FYM + 50% Pig manure + *Rhizobium*), T₉ (50% FYM + 50% Poultry Manure + *Trichoderma*) and T₁₀ (control). The experimental results revealed that significantly higher values on growth parameters viz., plant height (49.93 cm), number of branches (6.53), days to 50% flowering and 50% pod formation were recorded under T₉, while the highest leaf area (9.22 cm²), length of pods (9.50 cm), test weight (15.35 g), foliage yield (23.67 q/ha) and seed yield (15.10 q/ha) was recorded higher under T₈. Among all the treatments, T₇ recorded the highest BCR (2.90) even though T₈ had higher net returns (Rs. 1,03,046.80/ha). From the present investigation it can be concluded that among the different organic treatments on fenugreek, combined application of organic manures was found to be superior in terms of growth and yield attributes.

Keywords : Fenugreek, organic manures, biofertilizers, growth attributes, yield attributes, economics.

Introduction

Fenugreek (*Trigonella foenum-graecum* L.), an ancient herb known for its medicinal and culinary applications, is widely cultivated in India as well as in parts of North Africa, the Mediterranean, and Canada (Dhull *et al.*, 2020). In India, it stands as the third most cultivated seed spice after coriander and cumin. Botanically, fenugreek is a self-pollinating annual herb from the Fabaceae family, featuring trifoliate leaves, pale flowers and aromatic seeds that are used for both culinary and medicinal purposes (Ecocrop, 2017). Fenugreek seeds are a rich source of nutrients and bioactive compounds, offering various health benefits. They exhibit properties such as antidiabetic,

galactagogue, cholesterol-lowering and digestive aid (Dhull *et al.*, 2020). The seeds are composed of significant levels of protein (27.57%), fat (6.71%), dietary fiber, essential minerals like calcium and iron, and biologically active compounds including galactomannan and trigonelline. Additionally, the presence of diosgenin, a plant-based steroid makes fenugreek a valuable source for pharmaceutical preparations such as contraceptives (Mufti *et al.*, 2017). Growing concerns over the negative impacts of chemical fertilizers and pesticides have shifted agricultural focus towards organic alternatives. Organic amendments such as farmyard manure (FYM), vermicompost, and biofertilizers offer comprehensive benefits by improving soil fertility, enriching it with

micronutrients, and enhancing plant resilience (Patel *et al.*, 2022). Research has shown that these inputs can significantly boost the growth and productivity of seed spices, including coriander and fennel (Lal *et al.*, 2016; Darzi *et al.*, 2008). Furthermore, biofertilizers facilitate essential nutrient cycling through nitrogen fixation and phosphorus solubilization, while also producing plant growth-promoting substances (Raiyani *et al.*, 2018). Although India plays a dominant role in global fenugreek cultivation, its production remains minimal in the North Eastern states, including Nagaland. Limited awareness of the crop's nutritional and therapeutic potential may be a contributing factor. Encouraging organic fenugreek farming in these underutilized areas could enhance regional agricultural development, diversify cropping systems, and provide both nutritional and economic benefits to local communities.

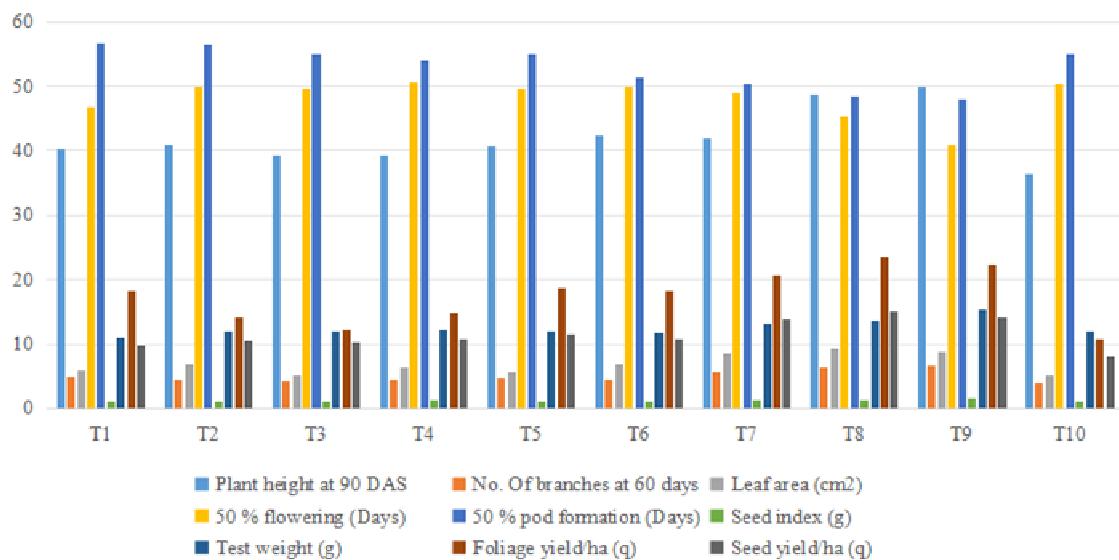
Materials and Methods

The study was conducted using fenugreek variety AFg-5, sourced from the National Research Centre for Seed Spices, Ajmer, Rajasthan and the experiment was conducted at the School of Agricultural sciences (SAS), Nagaland University, Medziphema Campus spanning from September 2022 to February 2023. Organic manures, including FYM, poultry manure and pig manure, were collected locally, while neem cake and vermicompost were procured from the market. Biofertilizers such as *Rhizobium* and *Trichoderma viride* were obtained from the Bio-Control Lab, Medziphema. The experiment followed a Randomized Block Design (RBD) with three replications and ten treatments, laid out in plots measuring 2m × 1m. The treatments included different organic manures and their combinations with biofertilizers, along with a control. The treatment consisted of T₁ (Farm Yard Manure) (FYM) 100%, T₂ (Vermicompost 100%), T₃ (Neem Cake 100%), T₄ (Pig manure 100%), T₅ (Poultry Manure 100%), T₆ (50% FYM + *Trichoderma*), T₇ (50% Poultry Manure + *Rhizobium*), T₈ (50% FYM + 50% Pig manure + *Rhizobium*), T₉ (50% FYM + 50% Poultry Manure + *Trichoderma*) and T₁₀ (control). The field was prepared by plowing and leveling, followed by manure application as per treatment specifications. Seeds were treated with *Rhizobium* and *Trichoderma* before sowing at a recommended seed rate of 12 kg/ha with 30×10 cm spacing. Thinning, gap filling, and hand weeding were carried out at specific intervals, while irrigation was provided as needed. Pest control involved hand-picking insects and applying neem oil. Harvesting was done when pods matured, followed by sun drying, threshing, and seed collection. Observations were recorded for vegetative,

phenological, and yield attributes, including germination days, plant height, number of branches, leaf area, flowering time, pod formation, seed yield, and economic parameters such as cost of cultivation, gross and net returns, and benefit-cost ratio. Statistical analysis was performed using ANOVA, and significant differences were determined using the Critical Difference (CD) test (Panse and Sukhatme, 1985).

Results and Discussion

As recorded in Table 1 and Fig.1, significant differences in growth and yield parameters were observed across the treatments. Seeds treated with biofertilizers (T₆, T₇, T₈ and T₉) germinated earlier (4 days) as compared to those under organic manures alone (5 days), this is attributed to the microbial biostimulants enhancing nutrient uptake and stress tolerance (Cardarelli *et al.*, 2022). *Trichoderma* treated seeds (T₆ and T₉) further benefited from improved nutrient solubilization and pathogen suppression (Lal *et al.*, 2013; Aishwath *et al.*, 2017). The plant height and vegetative growth were highest in T₉ (49.93 cm) and T₈ (48.63 cm), significantly surpassing the control (T₁₀: 36.33 cm). This improvement is likely attributed to the *Rhizobium*'s nitrogen fixation and synergistic effects with organic inputs (Saxena & Singh, 2019). T₉ also showed the maximum number of branches (6.53) and leaf area (9.22 cm²), emphasizing the benefits of integrating biofertilizers and organics (Naimuddin *et al.*, 2014; Malav *et al.*, 2018).


The Phenological development among the treatments also varied where the earliest flowering (35 days) was seen in T₈, followed by T₁, while delayed flowering occurred in T₃, T₁₀, and T₅. Time taken to 50% flowering was shortest in T₈ (41 days) and longest in T₄ (50.67 days), highlighting the efficacy of FYM-pig manure-*Rhizobium* combinations (Lal *et al.*, 2016). Early pod formation was observed in T₈ (48.33 days) and T₉ (48.00 days), contrasting with delays in T₁ and T₂, which is most likely due to improved nutrient dynamics and microbial activity (Badar *et al.*, 2016; Raiyani *et al.*, 2018; Ramniwas *et al.*, 2022).

Among the treatments, highest yield attributes were recorded in T₈, which recorded the most pods per plant (15.33), pod length (9.50 cm), seeds per pod (16.50), and seed yield (15.0 q/ha). It was followed closely by T₉, while T₁₀ consistently showed the lowest performance. The enhanced results in T₈ as compared to the other treatments are attributed to better nutrient availability, nitrogen fixation and hormone production by *Rhizobium* (Mehta *et al.*, 2010; Naimuddin *et al.*, 2014; Mehta *et al.*, 2012).

Table 1: Growth, Yield attributes and BCR of fenugreek under the influence of organic inputs.

Treatments	Plant height at 90 DAS	No. of branches at 60 days	Leaf area (cm ²)	50 % flowering (Days)	50 % pod formation (Days)	Seed index (g)	Test weight (g)	Foliage yield/ha (q)	Seed yield/ha (q)	B:C ratio
T ₁	40.33	4.87	5.99	46.67	56.67	1.11	11.06	18.16	9.85	1.79
T ₂	41.00	4.40	7.00	50.00	56.33	1.19	11.88	14.02	10.47	1.31
T ₃	39.23	4.13	5.14	49.67	55.00	1.20	12.03	12.28	10.22	0.56
T ₄	39.33	4.53	6.33	50.67	54.00	1.23	12.28	14.82	10.67	1.65
T ₅	40.67	4.70	5.67	49.67	55.00	1.18	11.84	18.71	11.53	2.27
T ₆	42.30	4.57	6.95	50.00	51.33	1.16	11.60	18.33	10.85	1.15
T ₇	41.83	5.67	8.64	49.00	50.33	1.32	13.18	20.67	13.80	2.90
T ₈	48.63	6.50	9.22	45.33	48.33	1.37	13.72	23.67	15.10	2.33
T ₉	49.93	6.53	8.80	41.00	48.00	1.54	15.36	22.44	14.25	2.32
T ₁₀	36.33	4.00	5.18	50.33	55.00	1.20	12.04	10.79	8.18	1.25
SEm±	0.87	0.21	0.58	0.99	0.83	0.09	0.88	0.73	0.16	-
CD(P=0.05)	2.59	0.62	1.72	2.95	2.48	0.26	2.60	2.18	0.48	-

Cultivation of Fenugreek using different Organic inputs

Fig. 1 : Cultivation of Fenugreek under different Organic Input

Even in terms of economic viability, T₈ recorded the highest gross returns (Rs. 1,03,046.48/ha) and a B:C ratio of 2.33, while T₇ (Poultry Manure + *Rhizobium*) yielded the highest profitability (B:C ratio 2.90). Whereas in contrast, T₃ (Neem Cake) and T₁₀ (Control) showed the least economic viability. These findings affirm the cost-effectiveness and agronomic potential of combining organic manures with microbial inoculants (Somdutt *et al.*, 2019; Raghuwanshi *et al.*, 2016)

Conclusion

The study demonstrated that combining organic manures with biofertilizers significantly improved the growth, yield, and economic returns of fenugreek

under the foothill conditions of Nagaland. Among all treatments, T₈ (50% FYM + 50% Pig manure + *Rhizobium*) showed superior performance in early germination, plant height, leaf area, pod number, seed yield (15.10 q/ha), and net return (Rs. 1,03,046.80/ha) with a B:C ratio of 2.33. T₇ and T₈ also performed well, with T₇ yielding the highest Benefit Cost Ratio (2.90) due to lower input costs. The control treatment (T₁₀) recorded the lowest values across all parameters which highlighted the importance of integrated nutrient management. The results suggest that the combined application of 7.5 t/ha FYM, 2.5 t/ha Pig manure, and 1.5 kg/ha *Rhizobium* is optimal for sustainably enhancing fenugreek productivity in this region.

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Aishwath, O. P., Lal, G., Naimuddin, and Singh, B. (2017). Evaluation of nutritional quality of manures; impact on yield and uptake of nutrients in Fenugreek (*Trigonella foenum-graecum*) and soil properties under Typic Haplustepts. *ICAR-National Research Centre on Seed Spices*, **87**(9): 1158-64.

Badar, R., Rashid, U., Siddiqa, A., Kaleem, M., Khurshid, H., Alfat, S. S., Khalid, H., Uroosa, Zamir, T., Mushtaque, W. and Yaseen, N. (2016). Application of Biofertilizers for improving the growth of fenugreek plants (*Trigonella foenum-graecum* L.) *Journal of Pharmacognosy and phytochemistry*, **5**(2): 288-290.

Cardarelli, M., Woo, S.L., Rouuphael, Y. and Colla, G. (2022). Seed treatment with Microorganisms can have a Biostimulant Effect by influencing Germination and Seedling Growth of Crops. *Plants(Basel)*, **11**(3):259.

Darzi, M.T., Ghalavand, A. and Rejali, F. (2008). Effect of mycorrhiza, vermicompost and phosphate solubilizers application on flowering, biological yield and root colonization in fennel. *Iranian journal of crop science*, **10**:88-109

Dhull, S.B., Punia, S., Kidwai, M.K., Kaur, M., Chawla, P., Purewal, S. S., Sangwan, M. and Palthania, S. (2020). Solid-state fermentation of lentil (*Lens culinaris* L.) with *Aspergillus awamori*: Effect on phenolic compounds, mineral content, and their bioavailability. *Legume Science*, **2**(37)

Ecocrop. (2017). Ecocropdatabase. FAO, Rome, Italy. <http://ecocrop.fao.org/ecocrop/srv/en/home>

Lal, G., Saini, I.P., Metha, R.S., Maheria, S.P. and Sharma, Y. (2013). Effect of irrigation and different seed treatment, on growth and yield of Fenugreek (*Trigonella foenum graecum* L.). *International Journal Seed Spices*, **3**(2): 29-33.

Lal, G., Singh, R., Metha, R.S., Sharma, Y.K., Kant, K. and Maheria, S.P. (2016). Standardization of organic module for sustainable production of Fenugreek (*Trigonella foenum graecum* L.). *Journal on Legume research*, **40**(1):144-149.

Malav, J.K., Patel, J.K., Pavaya, R.P., Patel, B.B. and Patel, V.R. (2018). Effect of different organic sources on fenugreek (*Trigonella foenum-graecum* L.) under organic farming module. *International Journal of Current Microbiology and Applied Sciences*, **7**(2):2319-7706

Mehta, R.S., Patel, B.S., Meena, S.S. and Meena, R.S. (2010). Influence of nitrogen and phosphorus biofertilizers on growth characteristics and yield of fenugreek (*Trigonella foenum-graecum* L.) *Journal of Seed spice Aroma,Crops*, **192**: 3-28

Mehta, R.S., Anwer, M.M., Aishwath, O.P. and Meena, R.S. (2012). Growth, yield and quality of fenugreek (*Trigonella foenum-graecum* L.) as influenced by nitrogen, phosphorus and bio-fertilizers. *Indian Journal of Horticulture*, **69**: 94-97

Mufti, S., Chattoo, M.A., Wani, K.P., Bhat, R., Mushtaq, F., Afroza, B., Nabi, A. and Masoodi, U.H. (2017). Carry over effect of organic manures and inorganic fertilizers on growth, yield and quality of residual crop fenugreek in brinjal-fenugreek cropping sequence . *Journal of pharmacognosy and phytochemistry*, **6**(6): 1883-1886

Naimuddin, Aishwath, O.P., Lal, G., Kant, K., Sharma, Y.K. and Ali, S.F. (2014). Reapone of *Trigonella foenum-graecum* to organic manures and Rhizobium inoculationin a Typic Haplustept. *Journal of Spices and Aromatic crops*, **23**(1): 110-114.

Panse, V.G. and Sukhatme, P.V. (1985). Statistical methods for agricultural workers, ICAR New Delhi.

Patel, M. P., Ardeshra, R. B., Zala, J. N. and Patel, R. S. (2022). Growth and yield of fenugreek as affected by integrated nutrient management in fenugreek-fodder sorghum cropping sequence. *The Pharma Innovation Journal*, **11**(12): 1183-1186

Raiyani, V.N., Kathiriya, R.K., Thummer, V.M. and Rupareliya, V.V. (2018). Effect of FYM and biofertilizers on growth, yield attributes and yield of fenugreek (*Trigonella foenum-gracum* L.) *IJCS*, **6**(4): 746-748.

Saxena, A.K. and Singh, S. (2019). Growth and yield of Fenugreek (*Trigonella foenum-T. graecum* L.) as influenced by solid and liquid biofertilizers (*Rhizobium*, PSB and KSB). *RJCES*, **7**(3): 52-55.

Somdutt., Dashora, L. N., Mundra, S. L., Choudhary, J. and Choudhary, P. (2019). Effect of inorganic and organic sources of fertilization on productivity of fenugreek (*Trigonella foenum-graecum* L.) under agroclimatic conditions of Southern Rajasthan. *Journal of Pharmacognosy and Phytochemistry*, **8**(4): 1886-1888.